Basic Statistics¶
Basic statistics algorithm computes the following set of quantitative dataset characteristics:
minimums/maximums
sums
means
sums of squares
sums of squared differences from the means
second order raw moments
variances
standard deviations
variations
Operation |
Computational methods |
Programming Interface |
||
Mathematical formulation¶
Refer to Developer Guide: Basic statistics.
Programming Interface¶
All types and functions in this section are declared in the
oneapi::dal::basic_statistics
namespace and are available via inclusion of the
oneapi/dal/algo/basic_statistics.hpp
header file.
Descriptor¶
-
template<typename
Float
= detail::descriptor_base<>::float_t, typenameMethod
= detail::descriptor_base<>::method_t, typenameTask
= detail::descriptor_base<>::task_t>
classdescriptor
¶ - Template Parameters
Properties
-
result_option_id
result_options
¶ Choose which results should be computed and returned.
- Getter & Setter
result_option_id get_result_options() const
auto & set_result_options(const result_option_id &value)
Training compute(...)
¶
Input¶
-
template<typename
Task
= task::by_default>
classcompute_input
¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute
.
Constructors
-
compute_input
(const table &data)¶ Creates a new instance of the class with the given
data
property value.
Properties
Result¶
-
template<typename
Task
= task::by_default>
classcompute_result
¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute
.
Constructors
-
compute_result
()¶ Creates a new instance of the class with the default property values.
Properties
-
const table &
min
¶ A \(1 \times p\) table, where element \(j\) is the minimum result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_min() const
auto & set_min(const table &value)
-
const table &
mean
¶ A \(1 \times p\) table, where element \(j\) is the mean result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_mean() const
auto & set_mean(const table &value)
-
const table &
sum_squares_centered
¶ A \(1 \times p\) table, where element \(j\) is the sum_squares_centered result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_sum_squares_centered() const
auto & set_sum_squares_centered(const table &value)
-
const table &
sum
¶ A \(1 \times p\) table, where element \(j\) is the sum result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_sum() const
auto & set_sum(const table &value)
-
const table &
sum_squares
¶ A \(1 \times p\) table, where element \(j\) is the sum_squares result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_sum_squares() const
auto & set_sum_squares(const table &value)
-
const table &
variation
¶ A \(1 \times p\) table, where element \(j\) is the variation result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_variation() const
auto & set_variation(const table &value)
-
const table &
variance
¶ A \(1 \times p\) table, where element \(j\) is the variance result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_variance() const
auto & set_variance(const table &value)
-
const result_option_id &
result_options
¶ Result options that indicates availability of the properties. Default value: full set of.
- Getter & Setter
const result_option_id & get_result_options() const
auto & set_result_options(const result_option_id &value)
-
const table &
second_order_raw_moment
¶ A \(1 \times p\) table, where element \(j\) is the second_order_raw_moment result for feature \(j\). Default value: table{}.
- Getter & Setter
const table & get_second_order_raw_moment() const
auto & set_second_order_raw_moment(const table &value)
Operation¶
-
template<typename
Descriptor
>
basic_statistics::compute_resultcompute
(const Descriptor &desc, const basic_statistics::compute_input &input)¶ - Parameters
desc – Basic statistics algorithm descriptor
basic_statistics::descriptor
input – Input data for the computing operation
- Preconditions
input.data.is_empty == false