/*******************************************************************************
* Copyright 2020-2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <iostream>
#include "tbb/global_control.h"
#include "tbb/parallel_for.h"
#include "example_util/utils.hpp"
#include "oneapi/dal/algo/jaccard.hpp"
#include "oneapi/dal/graph/service_functions.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"
#include "oneapi/dal/table/homogen.hpp"
namespace dal = oneapi::dal;
/// Computes Jaccard similarity coefficients for the graph. The upper triangular
/// matrix is processed only as it is symmetic for undirected graph.
///
/// @param [in] g The input graph
/// @param [in] block_row_count The size of block by rows
/// @param [in] block_column_count The size of block by columns
template <class Graph>
void vertex_similarity_block_processing(const Graph &g,
std::int32_t block_row_count,
std::int32_t block_column_count);
int main(int argc, char **argv) {
// load the graph
const auto filename = get_data_path("graph.csv");
using graph_t = dal::preview::undirected_adjacency_vector_graph<>;
const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });
// set the block sizes for Jaccard similarity block processing
const std::int32_t block_row_count = 2;
const std::int32_t block_column_count = 5;
// set the number of threads
const std::int32_t tbb_threads_number = 4;
tbb::global_control c(tbb::global_control::max_allowed_parallelism, tbb_threads_number);
// compute Jaccard similarity coefficients for the graph
vertex_similarity_block_processing(graph, block_row_count, block_column_count);
return 0;
}
template <class Graph>
void vertex_similarity_block_processing(const Graph &g,
std::int32_t block_row_count,
std::int32_t block_column_count) {
// create caching builders for all threads
std::vector<dal::preview::jaccard::caching_builder> processing_blocks(
tbb::this_task_arena::max_concurrency());
// compute the number of vertices in graph
const std::int32_t vertex_count = dal::preview::get_vertex_count(g);
// compute the number of rows
std::int32_t row_count = vertex_count / block_row_count;
if (vertex_count % block_row_count) {
row_count++;
}
// parallel processing by rows
tbb::parallel_for(
tbb::blocked_range<std::int32_t>(0, row_count),
[&](const tbb::blocked_range<std::int32_t> &r) {
for (std::int32_t i = r.begin(); i != r.end(); ++i) {
// compute the range of rows
const std::int32_t row_range_begin = i * block_row_count;
const std::int32_t row_range_end = (i + 1) * block_row_count;
// start column ranges from diagonal
const std::int32_t column_begin = 1 + row_range_begin;
// compute the number of columns
std::int32_t column_count = (vertex_count - column_begin) / block_column_count;
if ((vertex_count - column_begin) % block_column_count) {
column_count++;
}
// parallel processing by columns
tbb::parallel_for(
tbb::blocked_range<std::int32_t>(0, column_count),
[&](const tbb::blocked_range<std::int32_t> &inner_r) {
for (std::int32_t j = inner_r.begin(); j != inner_r.end(); ++j) {
// compute the range of columns
const std::int32_t column_range_begin =
column_begin + j * block_column_count;
const std::int32_t column_range_end =
column_begin + (j + 1) * block_column_count;
// set block ranges for the vertex similarity algorithm
const auto jaccard_desc =
dal::preview::jaccard::descriptor<>().set_block(
{ row_range_begin, std::min(row_range_end, vertex_count) },
{ column_range_begin,
std::min(column_range_end, vertex_count) });
// compute Jaccard coefficients for the block
dal::preview::vertex_similarity(
jaccard_desc,
g,
processing_blocks[tbb::this_task_arena::current_thread_index()]);
// do application specific postprocessing of the result here
}
},
tbb::simple_partitioner{});
}
},
tbb::simple_partitioner{});
}